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Abstract
We relate the frequency of the scissors mode to the moment of inertia of a
trapped Bose gas at finite temperature in a semi-classical approximation. We
apply these theoretical results to the data obtained in our previous study of the
properties of the scissors mode of a trapped Bose–Einstein condensate of 87Rb
atoms as a function of the temperature. The frequency shifts that we measured
show quenching of the moment of inertia of the Bose gas at temperatures below
the transition temperature—the system has a lower moment of inertia than that
of a rigid body with the same mass distribution, because of superfluidity.

1. Introduction

The onset of Bose–Einstein condensation (BEC) [1] in ultra-cold atomic gases is clearly
observed through the change in the density profile of the confined system. In contrast,
superfluid behaviour in these systems has proved to be more difficult to observe. Four years
after the first observation of BEC in atomic gases, evidence for superfluidity was ‘still quite
circumstantial’ [2] but in recent years superfluid phenomena in dilute gases have been the
subject of much theoretical and experimental work [3]. Superfluidity in trapped condensates
was clearly demonstrated by experiments that showed evidence for a critical velocity [4], the
creation of vortices [5,6] and the observations of the scissors mode [7,8]. Many striking features
of superfluids are associated with their response to rotation. In this paper we concentrate only
on one aspect, namely the quenching of the moment of inertia, so that the superfluid always
has less moment of inertia than a rigid body with same density distribution. We first review our
recent results on the scissors mode of excitation, which is our tool to measure the moment of
inertia of the Bose gas. We then use the theory recently developed by Zambelli and Stringari [9]
to deduce the moment of inertia of the gas at finite temperature.

2. The scissors mode

The scissors mode of excitation was first studied in atomic nuclei and predicted by a geometrical
model [10]. Its experimental discovery [11] has been one of the most exciting findings
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in nuclear physics during the last two decades [12]. According to the geometrical picture,
such a mode arises from a counter-rotational oscillation of the deformed proton and neutron
fluids, where the axes of the deformed clouds move like the blades of a pair of scissors.
Extensive studies of this mode have investigated important features such as the dependence of
its strength on the nuclear deformation and its relation with the superfluid moment of inertia
of the nucleus [12].

In a theoretical paper [7] Guéry-Odelin and Stringari extended the study of the scissors
mode to the case of trapped gases. They investigated the oscillatory excitation of a dilute
atomic gas following a sudden rotation of the anisotropic confining potential and they showed
how the scissors mode is a manifestation of the superfluidity of a trapped BEC. In this section
we apply their approach to the specific geometry of our TOP trap and discuss the expected
results for the scissors mode of both the BEC and the classical gas. We then show experimental
results for the scissors mode oscillations and finally put the scissors mode into the context of
the low-energy spectrum of BEC excitations.

A Bose condensate of density n(�r, t) at T = 0 is well described by the hydrodynamic
equations of superfluids:

∂n

∂t
+ ∇ · (n�v) = 0 continuity equation (1)

m
∂ �v
∂t

+ ∇
(
Vext + gn +

mv2

2

)
= 0 force equation (2)

where Vext is the external potential, g characterizes the particle interaction strength and m is
the mass of the particles. The velocity flow �v(�r, t) is related to the phase S(�r, t) of the complex
order parameter � = √

n eiS through

�v(�r, t) = h̄

m
∇S(�r, t). (3)

This relation immediately leads to ∇×�v = 0, i.e. the velocity flow is irrotational. Since�must
be single-valued the phase change over a closed path must be modulo 2π . In the case of a BEC
with a large number of atoms, we can use the Thomas–Fermi ground state density distribution
n = [µ− Vext(�r)]/g as a stationary solution [13], where µ is the chemical potential.

The gas is initially in thermal equilibrium in an anisotropic harmonic potential Vext(r)

with three frequencies ωx � ωy < ωz
Vext(r) = m

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2). (4)

It is convenient to define the two quantities ωsc = √
ω2
x + ω2

z and ε = (ω2
z − ω2

x)/(ω
2
z + ω2

x)

where ε gives a measure of the deformation of the confining potential. For the TOP trap case we
have ωz = √

8ωx , so that ωsc = 3ωx and ε = 7/9. To start the scissors mode at a certain time
one rotates the trapping potential through a small angle θ0 about the y axis. The condensate
is no longer in equilibrium and the atomic cloud will start oscillating about the y axis. After
the sudden rotation of the trapping potential the TF density can be rewritten with respect to
the axes of the rotated potential. Making the small angle approximations x → x − θz and
z → z + θx, leads to a time-dependent density

n(�r, t) = µ

g
− m

2g
[ω2
xx

2 + ω2
yy

2 + ω2
zz

2 + 2ω2
scεθ(t)xz]. (5)

In the subsequent motion, the cloud is not deformed provided that the change in the potential
is too small to excite shape oscillations. In other words the scissors motion is completely
decoupled from ‘compressional’ modes and the velocity flow satisfies the condition

∇ · �v = 0. (6)
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The velocity flow for a condensate is also irrotational. The constraints on the velocity flow
lead to

�v = β(t)∇(xz). (7)

Substituting the expressions for n and �v into equations (1) and (2) we then get two equations
for the angle θ(t) and the phase parameter β(t):

θ̇ (t) = −β(t)/ε
β̇(t) = ω2

sc ε θ(t).
(8)

Oscillations cannot occur about an axis with cylindrical symmetry, i.e. ε = 0, since in this
case the angle θ loses its geometrical meaning and the phase of the condensate is constant.
When ε 	= 0, equations (8) lead to harmonic angular motion of the cloud θ̈ = −ω2

scθ . The
initial conditions θ(0) = θ0 and �v(0) = 0 yield the solutions

θ(t) = θ0 cos(ωsc t)

β(t) = ε θ0 ωsc sin(ωsc t).
(9)

The scissors mode is an oscillation of the condensed cloud at ωsc which is undamped at T = 0.
This result is a direct consequence of superfluidity and in particular of the relation between
the velocity flow and the phase of the condensate. In this sense the constraint on the overall
phase of the order parameter is transposed to the dynamical behaviour of the cloud during a
scissors oscillation.

The thermal gas behaves in a completely different way after a scissors excitation. In
the so-called collisionless regime (when the collision time is larger than the trap oscillation
period), the evolution of the cloud angle is the superposition of two undamped oscillations at
frequencies given byω± = |ωz±ωx | [7]. The sudden rotation of the potential excites both low-
and high-frequency oscillations with the same amplitude. These two modes correspond to two
types of flow pattern: the high-frequency one is irrotational flow whereas the low-frequency
oscillation is of rotational nature, related to the rigid body value for the moment of inertia of
a classical gas. We can summarize these results by writing the velocity flow of the classical
gas in terms of a rotational frequency �rot and of a scalar pseudo-potential χ(�r) responsible
for the irrotational flow �v = ��rot × �r + ∇χ(�r) [14].

In our experiments [8, 15] we use radio-frequency induced evaporation to cool the atoms
in a TOP trap to the desired temperature T (we obtain ‘pure’ condensates with 2 ×104 atoms).
The frequencies of this trap are ωx = ωy = 2π × 126 Hz, ωz = √

8ωx . We then apply an
oscillatory bias field along the z axis, which adiabatically tilts the confining potential by a small
angleφ in 0.2 s. This angle was kept fixed at a value ofφ = 3.4◦ for all the measurements. This
procedure also reduces ωz by ∼2%. After the adiabatic tilting, we suddenly flip the trap angle
to −φ. This excites the scissors mode in the xz plane with an amplitude θ0 = 2φ, about the
new equilibrium position. To observe the scissors mode of the thermal cloud after the sudden
rotation of the potential, pictures of the atom cloud in the trap were taken after a variable delay.
The angle of the cloud was extracted from a 2D Gaussian fit of the absorption profiles. To
observe the scissors mode in a Bose–Einstein condensed gas we allow the BEC to evolve in the
trap for a variable time after exciting the scissors mode and then release the condensate from
the trap so that it expands for 14 ms before the time-of-flight image. The repulsive mean-field
interactions cause the cloud to expand rapidly when the confining potential is switched off,
so that its spread is much greater than the initial size. The aspect ratio of the cloud changes
during the expansion (the long axis is always at 90◦ to the original long axis in the trap) but
this does not affect the results since we only extract the frequency at which the cloud angle
oscillates.
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Figure 1. Scissors mode oscillations and frequency shifts (as reported in [15]). (a) Scissors
oscillation of a thermal cloud at T/T0 = 1.29. The scissors mode is characterized by two
frequencies of oscillation with equal amplitude. (b) A condensate at T/T0 = 0.53 exhibits
an almost undamped oscillation at a frequency that agrees well with the hydrodynamic value.
(c) Temperature-dependent frequency shift of the scissors mode of the condensate (solid circles)
and hydrodynamic prediction (dashed line). The low-temperature frequencies are systematically
higher than the hydrodynamic value by ∼1% because of the finite number of atoms. The scissors
mode frequencies of the thermal component are represented by open circles and the collisionless
predictions by the dotted lines. The frequency spectrum has been normalized to ωx .

Figure 1(a) shows the scissors mode oscillations for the thermal cloud (T/T0 = 1.29,
T0 being the transition temperature) and (b) for the condensate (T/T0 = 0.53), (c) we
plot the scissors mode frequency shift as a function of temperature [15]. The measured
frequencies of the thermal cloud do not change with temperature and agree very well
with the collisionless frequencies, both above and below the critical temperature. Both
frequency components have the same amplitude implying that energy is shared equally
between rotational and irrotational velocity flow. The scissors mode oscillation of the BEC
component occurs at a single frequency ωsc. However, the frequency of oscillation and
its damping change dramatically with temperature [15]. Figure 1(c) shows the measured
frequencies for the scissors mode of the thermal cloud (open circles) and condensate (solid
circles) for different temperatures. For the lower temperature BEC points we measure a
frequency that is systematically ∼1% higher than the hydrodynamic prediction. This agrees
with the scissors mode frequency we calculated for a finite number condensate (2 × 104)
using the method given by Pires and de Passos [16]. Stimulated by our work, Jackson
and Zaremba [17] have recently developed a theoretical description of the scissors mode at
finite T . Their theoretical results are in good agreement with our experimental results for a
wide range of temperatures. Close to the critical temperature, T/T0 > 0.8, there are some
discrepancies and both the frequency shift and damping rate simulations deviate from the
observed behaviour.

The scissors mode is a previously unobserved collective mode of a BEC and figure 2
shows how it fits in with the other energy modes. The dipole modes (centre of mass motion) of
a BEC occur at the trap frequencies by Kohn’s theorem, and we used this property to calibrate
our trap frequencies. The frequencies of other collective modes do not directly correspond
to harmonic oscillator states because of the atomic interactions. In an axially symmetric trap
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Figure 2. Low-energy spectrum of a trapped BEC in a TOP trap. In a TOP trap geometryωx = ωy ,
the z component of the angular momentum is conserved and m is a good quantum number. There
are three dipole modes: one at ωz and two degenerate modes at ωx . The six quadrupole modes are:
m = 0 high-lying, m = 0 low-lying, the doubly degenerate |m = 2| and two degenerate scissors
modes. In an anisotropic trap we have three dipole modes, three scissors modes (odd parity) and
three compressional modes (even parity).

the angular momentum about the symmetry axis is conserved and we use its eigenvalue m
to label the low-energy modes. We have high- and low-lying m = 0 modes and the m = 2
mode [18]. Moreover, there are two degenerate (ωx = ωy) scissors modes with frequencies
ωxz = ωyz = ωsc.

3. Moment of inertia

The moment of inertia is a fundamental quantity of a physical system that characterizes its
rotational properties. For rotation about the z axis a classical rigid body has a moment of
inertia given by rig = mN〈x2 + y2〉 whereN is the number of particles in the system,m their
mass and 〈〉 denotes an ensemble average. In superfluids the response to a weak rotational
field is always less than that of a classical rigid body. This quenching of the moment of inertia
have been studied in different many-body systems. In early experiments on liquid helium by
Andronikashvili, measurements on the moment of inertia gave a quantitative measure of the
superfluid density [19]. In nuclear physics the strong reduction of the moment of inertia with
respect to the rigid body value gave indication of the superfluidity of nuclear matter soon after
the discovery of nuclear rotational states [20].

In the framework of linear response theory [21] the moment of inertia of a gas  is a
dynamical property of the system. Relative to a certain rotation axis, it is defined as the linear
response to a rotational probe field −�Ĵz

 = lim
�→0

〈Ĵz〉
�
. (10)
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For a Bose condensed gas this definition holds for systems rotating with angular velocities less
than the critical value�c which gives the occurrence of quantized vortices. In our experiments
we study the response to an angular impulse and the rotational probe is the scissors excitation.
The link between the scissors mode and the moment of inertia has been recently established by
Zambelli and Stringari [9]. In their analysis they calculate explicitly the moment of inertia of
the boson gas using the quadrupole response function. This derivation leads to the evaluation
of for the condensate at T = 0 and the thermal cloud at T > T0 directly from scissors mode
frequency measurements.

Following their approach we can write the Hamiltonian of an interacting boson gas
as the sum of the kinetic energy, a term that represents the two-body interaction between
the particles and the confining harmonic potential V̂ext(�r) (the operator for the potential of
equation (4)). The crucial point of their analysis is the commutation relation that follows from
the rotational symmetry of the internal part of the Hamiltonian (kinetic and self-interaction
terms), so that [

Ĥ , Ĵz
] = [

V̂ext, Ĵz
] = imh̄(ω2

x − ω2
y)Q̂ (11)

where Q̂ = xy is the quadrupole operator1. This equation links the dynamics of the angular
momentum with the quadrupole operator that arises because of the deformation of the trap.
From this important relation and from the definition of moment of inertia in the context of linear
response theory it is possible to write  as a function of the imaginary part of the quadrupole
dynamic response function [21]. Thus the occurrence of superfluidity that is responsible for
the quenching of the moment of inertia is fundamentally linked to the dynamics of quadrupole
excitations.

In a scissors mode experiment we have a sudden rotation of the trap through a small
angle θ0. The resulting external time-dependent Hamiltonian comes from the angular
displacement of the potential with respect to the atomic cloud and for t > 0 can be written
as Ĥext(t) = mθ0(ω

2
x − ω2

y)Q̂. Using linear response theory it is then possible to find the

evolution of the average Q(t) ≡ 〈Q̂〉 and a relation between the reduced moment of inertia
and the quadrupole Fourier signalQ(ω) [9]:

 ′ = (ω2
x − ω2

y)
2

∫
dωQ(ω)/ω2∫
dωQ(ω)ω2

. (12)

This important general relation allows us to extract information about the moment of inertia
from the Fourier transform of the quadrupole moment. This signal in our experiment is
intrinsically related to the scissors mode angle oscillationQ(t) = N〈y2 − x2〉θ(t).

The relations discussed so far are very general and do not rely on any model for the cloud
density distribution. We can apply these equations in different regimes and specifically to
our scissors mode data. At T = 0 the condensate has a single frequency scissors oscillation
both for the ideal and the interacting gas. From this prediction we have that the quadrupole

1 The angular momentum evolution for a quantum system is in general given by the Heisenberg equation of
motion d �J/dt = −i[ �J ,H ]/h̄. During a scissors mode oscillation the angular momentum is intrinsically linked
to the quadrupole moment. Thus if we excite the xz scissors mode, then using relation (11), we can write the
evolution of the relevant averaged component 〈Jy〉 of the angular momentum d〈Jy〉/dt = −m(ω2

z − ω2
x)〈Q〉 =

−mN(ω2
z −ω2

x)〈x2 − z2〉θ(t). From the scissors mode angle evolution we can easily integrate the previous equation
and using the Thomas–Fermi mean square widths we finally get the explicit evolution of the angular momentum:

〈Jy〉 = − 2θ0µN

7ωsc

(
ω2
z − ω2

x

)2

ω2
xω

2
z

sin(ωsct).
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Figure 3. Moment of inertia and atom number. For very small number of atoms the moment of
inertia is consistent with the T = 0 non-interacting gas result (dotted line) i.e.  ′

ho = ε2
ho ≈ 0.23.

In the large atom number limit the moment of inertia approaches the Thomas–Fermi irrotational
value (dashed line), i.e.  ′

c = ε2 ≈ 0.6.

signal has a delta-like Fourier spectrum with amplitude Q0,c = θ0N〈y2 − x2〉c and resonant
frequency ωsc(N, T ). Application of equation (12) yields

 ′
c = (ω2

x − ω2
y)

2

ω4
sc(N, T )

. (13)

In the specific case of the TOP trap geometry we have thatωx = ωy and so ′
c with respect

to z is zero due to the rotational symmetry. The axial frequency is ωz = √
8ωx and we can

consider a scissors oscillation about they axis. In the Thomas–Fermi limit, using the expression
for the scissors mode frequency defined in section 2, we obtain the quenched irrotational value
of the moment of inertia  ′

c = ε2 � 0.6. We can also use equation (13) for a non-interacting
condensate. In this case the scissors frequency is simply the harmonic oscillator prediction
ωsc,ho = ωz + ωx and we eventually obtain the ideal gas value of the moment of inertia [22]
 ′

ho = ε2
ho � 0.23, where εho = (ωx − ωy)/(ωx + ωy) is the deformation of the harmonic

oscillator ground state. Indeed the interaction among the particles changes dramatically the
rotational properties of the BEC embodied in the dynamics of the scissors mode. Therefore
to evaluate this effect we can investigate the frequency change of the scissors mode with atom
number [16] and make use of equation (13). The result of this procedure is shown in figure 3.
These calculations were made for a TOP trap with radial frequencyωx/2π = 126 Hz. For very
low atom number, i.e. low interactions strength, we recover the ideal gas result  ′

ho � 0.23.
While in the limit of large N the moment of inertia approaches the Thomas–Fermi result
 ′

c � 0.6.
For a collisionless thermal cloud the response to a scissors excitation exhibits two

frequencies at ω+ andω− with the same amplitude θ0/2. The quadrupole signal amplitudes are
related to the angle amplitude throughQ0,th = N〈y2 −x2〉thθ0/2. Application of equation (12)
yields the moment of inertia for the gas above T0:

 ′
th = (ω2

x − ω2
y)

2

ω2
+ω

2−
. (14)

Using the scissors mode collisionless frequencies we obtain the rigid body value for the moment
of inertia  ′ = 1 as expected for a classical gas. For the thermal cloud the occurrence of the
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low-frequency mode at ω− is the key feature that yields the rigid body response of the gas
to the scissors excitation. For both T = 0 and T > T0 the reduced moment of inertia only
depends on the scissors mode frequencies and the geometry of the trap—it is independent
of the amplitude of the oscillations. This is not the case in the intermediate regime, i.e. for
condensed clouds at finite temperature.

In the general case when the Bose condensed cloud exhibits a scissors motion at finite
temperature the analysis of the total moment of inertia through the scissors oscillation becomes
more complicated. Indeed the normal and superfluid component respond in a different way to
the sudden rotation of the trap. However, we can extend the formalism developed in [9,22] to
extract important information on the total moment of inertia in a semi-classical approximation.
This approximation holds when the temperature T of the system is much larger than the
harmonic oscillator energy h̄ωho. This is the case for current experiments on dilute gases and
in particular for our experiment.

First of all for partially condensed clouds we need to introduce two distinct angles for the
condensate θc(t) and the thermal cloud θth(t). Thus after the sudden rotation of the trap the time-
dependent density of the gas will have a time-dependent contribution from both the condensed
and the thermal components. We can use the semi-classical approach to evaluate the total
quadrupole moment of the gas. In fact, in the linear regimeQ(t) is the sum of two terms, one
related to the BEC and one related to the thermal cloud oscillationQ(t) = Qc(t)+Qth(t)with

Qc(t) = N0(T )〈y2 − x2〉cθc(t) (15)

Qth(t) = [N −N0(T )] 〈y2 − x2〉thθth(t). (16)

Where N is the total number of atoms, N0(T ) is the temperature-dependent number of con-
densed atoms, and the average 〈〉c and 〈〉th are evaluated over the condensate and thermal
distributions respectively. The total Fourier signal will be the sum of two distinct terms as
well. In particular, the condensate responds at one frequency for all temperatures. Instead the
thermal cloud signal is a two frequency oscillation at all temperatures (see figure 1). Neglecting
the damping we can write the Fourier quadrupole signal as a superposition of δ-like functions
with temperature-dependent amplitudes:

Q0,th(T ) = θ0kBT

2m

G(3)

3G(2)
[N −N0(T )]

ω2
x − ω2

y

ω2
xω

2
y

(17)

Q0,c(T ) = 2θ0µ(T )N0(T )

7m

ω2
x − ω2

y

ω2
xω

2
y

(18)

where G(3) ≈ 6.5, G(2) ≈ 2.4 are numerical coefficients [22]. Substituting the total Fourier
signalQ(ω) in equation (12) under the conditions outlined above, we get

 ′(T ) =  ′
c(T ) + ′

thF(N, T )
1 + F(N, T ) . (19)

Here  ′
c(T ) and  ′

th are the same as equations (13) and (14) respectively but with the
temperature-dependent frequencies of the scissors mode. Instead the temperature-dependent
function F(N, T ) is related to the signal amplitudes and takes the expression

F(N, T ) = Q0,th

Q0,c

ω2
+ + ω2

−
ω2

sc

. (20)

In the Thomas–Fermi limit we eventually obtain

F(N, T ) = 7kBT

4µ(T )

G(3)

3G(2)

N −N0(T )

N0(T )

ω2
+ + ω2

−
ω2

sc(T )
. (21)
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Figure 4. Reduced moment of inertia at finite temperature. Temperature dependence of the moment
of inertia of the thermal (open circles) and condensed component (solid circles). The errors on
these data points reflect the relative errors on the scissors mode frequencies. For low temperatures
the moment of inertia of the condensate is in close agreement with the hydrodynamic prediction
for our geometry (dashed line) and it is in excellent agreement with the finite number correction
(dotted line). The solid line is the prediction of equation (22) that is based only on an estimate of
the cloud widths of the interacting gas and neglects the dynamical interaction between the BEC
and the thermal cloud. Finally the solid squares and line represent the moment of inertia for the
total quantum gas extracted by using equations (19) and (21) and the scissors mode data. The error
on these data points is of the order of 7%.

It is interesting to consider the two limiting cases for T → 0 and T → T0. In the first situation
we have that limT→0 F(N, T ) = 0 and  ′(0) =  ′

c(0) = ε2. While in the limit T → T0

the function F(N, T ) diverges and we recover the rigid body value of the moment of inertia
 ′(T0) =  ′

th = 1. This result can be compared with the one obtained from the densities
without considering any dynamics of the clouds [22]:

 ′(T ) = ε2 + f (N, T )

1 + f (N, T )
(22)

where the function f (N, T ) is the ratio between the rigid body moments of inertia for thermal
cloud and condensate and it depends only on condensate fraction, chemical potential and
temperature of the Bose gas

f (N, T ) =  th,rig

 c,rig
= 7kBT

2µ(T )

G(3)

3G(2)

N −N0(T )

N0(T )
. (23)

Thus f (N, T ) resembles F(N, T ) in equation (21) apart from the ratio of the squares of the
scissors mode frequencies at T = 0 to that at T . This ratio differs significantly from unity only
at temperatures T � 0.6T0 where the thermal cloud dominates the contribution to the total
moment of inertia. So we expect the static results to give a good description of the moment of
inertia of the gas at all temperatures.

We can now use the analytical results obtained so far to deduce the total moment of inertia
of the partially condensed system from our experiments on the scissors mode. First we can use
equations (14) and (13) to get the moment of inertia for the thermal and condensate separately
from the finite temperature frequency shifts of the scissors oscillations. In figure 4 we show
the behaviour of  ′

c(T ) (solid circles) and  ′
th(T ) (open circles) with temperature. Note that
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the moment of inertia of the thermal component is consistent with the rigid body value for
all measured temperatures in the experiment  ′

therm ≈ 1. We can see that all the relevant
quantities involved in equations (19) and (21) for the evaluation of the moment of inertia
can be extracted from TOF images [23]. The total atom number N and condensate number
N0(T ) are obtained from a two-dimensional double distribution: parabolic for the BEC and
Gaussian for the thermal cloud. The temperature of the cloud is deduced by fitting the wings
of the thermal cloud with a two-dimensional Gaussian distribution. The chemical potential
has been deduced using the Castin–Dum equations for the expanding BEC. Using all the data
extracted from the images we can ‘construct’ the moment of inertia of the total boson gas
from the quadrupole Fourier signal (equation (19)) for each measured temperature. The result
is shown in figure 4 (solid squares) and we can compare it with the thermal and condensate
contribution. The hydrodynamic prediction (dashed line) and the finite number correction
(dotted line) are also shown for comparison. A theory for the scissors mode frequency has
been only recently developed and also used to extract information on the moment of inertia at
finite temperature [17]. Our results are consistent with a monotonic increase of the moment
of inertia with increasing temperature and close to T0 the condensate scissors mode frequency
correspond to an effective moment of inertia close to the rigid body value. We can also compare
our approximation for the total moment of inertia with the estimate obtained from equation (22)
using the condensate fraction for the interacting gas [24]. This is shown as the solid line in
figure 4. Although we are neglecting the BEC scissors mode temperature frequency shift
i.e. the dynamical interaction between the thermal cloud and BEC component, the agreement
between the extracted data points and the static theory is good.

So far we have investigated the behaviour of the reduced moment of inertia of the gas. It is
also interesting to present the data in terms of the absolute (not reduced) values of the moments
of inertia for the two components of the system, i.e.  c =  ′

c c,rig and  th =  ′
th th,rig. In

the large number limit we obtain

 c

NkBT0
=  ′

c
N0

N

2µ

7kBT0

ω2
x + ω2

y

ω2
xω

2
y

(24)

 th

NkBT0
=  ′

th
T

T0

N −N0

N

G(3)

3G(2)

ω2
x + ω2

y

ω2
xω

2
y

. (25)

In particular as a consequence of the harmonic confinement, the temperature dependence of
the moment of inertia for the thermal component is linear above T0 and behaves as (T /T0)

4

below T0. Figure 5 shows the experimental data points and predictions based on the interacting
theory for both condensate and thermal cloud absolute moment of inertia. The condensate and
thermal cloud have equal moments of inertia  c =  th at T ≈ 0.47 T0. At this temperature
only 15% of the atoms are in the thermal cloud, but the cloud has a classical moment of inertia
and a broader spatial distribution than the BEC.

4. Conclusions

In conclusion we have shown how the scissors mode is an excellent rotational probe to study the
superfluid properties of a quantum gas. Specifically we have outlined its link with the moment
of inertia of the gas. This allowed us to explicitly measure the quenching of the moment of
inertia from our scissors mode data.

Another system where the scissors mode could be used as a powerful tool to demonstrate
superfluid flow is a Fermi degenerate gas. A recent theoretical analysis [25] of that system
shows that the transition to the superfluid state, below the BCS critical temperature TBCS, is
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Figure 5. Temperature dependence of the absolute moment of inertia of the thermal cloud (open
circles) and condensate (solid circles). The solid lines are the interacting theory predictions. The
condensate data and theory have been multiplied by a factor of 10 to make them more visible. The
dotted line is the original theoretical prediction for the BEC moment of inertia. The condensate
and thermal component have equal moment of inertia at T ≈ 0.47 T0.

signalled by the disappearance of the low frequency in the scissors oscillation that occur in
the normal degenerate Fermi gas above TBCS. The same analysis used here for extracting the
moment of inertia of the gas can be performed for a trapped Fermi gas to directly measure
the quenching of its moment of inertia below TBCS. In this case we have a situation similar to
heavy nuclei and some theoretical predictions have been already presented in [26].
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